THE CAIS 2 PROJECT

Sue LeGrand oy
SofTech, Houston, Texas

and

Richard Thall
Sof Tech, Waltham, Massachusetts

ABSTRACT

The Common APSE Interface Set (CAIS) is a proposed MIL-STD intended to
promote the portability of Ada Programming Support Environment (APSE)
tools written in Ada. The standardized interfaces define a virtual
operating system, from which portable tools derive their basic services,
e.g., file management, input/output, communications, and process control.
In the Ada world, such a virtual operating system is called a Kernel Ada
Programming Support Environment (KAPSE). The CAIS is a standardized
interface between KAPSEs and tools. The CAIS has been proposed as a
starting point for standard interfaces to be used in the NASA Software
Support Environment (SSE) for the Space Station Program. This paper
describes the status of the CAIS standardization effort and plans for
further development.

BACKGROUND

The proposed standard [1] was prepared, largely, by a volunteer group
composed of members of the KAPSE Interface Team (KIT) and KAPSE Interface
Team from Industry and Academia (KITIA). The KIT/KITIA is composed of 60
representatives from U.S. government, industry, and universities, as well
as foreign governments and institutions. ne seat on the KIT has recently
been created for a NASA representative. A small core group of dedicated
KIT/KITIA volunteers was responsible for producing the proposed CAIS 1
standard issued in January 1985. Public review of CAIS 1 is now being
completed as part of the normal military standardization process. Unless
insurmountable objections are recorded, CAIS 1 will become a MIL-STD. A
number of prototype implementations of CAIS 1 have been or are being
constructed for experimentation and validation of the ‘design. No
significant test of the design with tools that use the interfaces has yet
been undertaken.

D.2.5.1

- S35-¢/
- 18 57—
N89 163 167063

(-

Y‘)\-gr‘ M‘ﬂ



Design of a comprehensive interface set is a large, complex problem.
Since the resources of the original volunteer group were severely
constrained, CAIS 1 effort was focused on the problem of defining the
major structural elements of the virtual interfaces, 1i.e., the data
structuring model, the process control model, and input/output. Many
subjects could not be addressed in the requisite time. These include
configuration management issues, device control, resource management,
issues related to distribution, interfaces between Ada tools, data
exchange between eavironments, data typing in the file structure, and
graphically oriented input/output.

In late 1985, a contract was awarded to SofTech, Inc. of Waltham,
Massachusetts for the continued development of the CAIS. The enhanced
CAIS is called CAIS 2. Compusec, Inc. of San Diego, California is a
consultant to SofTech for issues relating to multilevel-secure operating
systems and access control. The Naval (cean Systems Center (NOSC) in San
Diego, California, is the contracting organization acting in behalf of the
Ada Joint Program Office. NOSC provides the technical lead for all
KIT/KITIA and CAIS-related programs.

CAIS 2 DEVELOPMENT

The primary goals of the CAIS 2 project are to produce a standard that:
o0 meets practical requirements,
0 1is technically superior,
o 1is developed with responsive public review, and

o has adequate supporting material.

The major products of this project are a draft CAIS 2 Standard and a final
CAIS 2 Standard. These are currently slated for publication in early 1987
and 1988, respectively. Experience has shown that it 1is exceedingly
difficult to understand a software interface standard in the absence of
considerable supporting documentation as well as an operating model. For
this reason, CAIS 2 will be accompanied by a Rationale, a Guide for CAIS
Implementors', a Formal Semantic Description of CAIS 2, and a prototype.
Rationale documents will be published with the draft and final CAIS 2.
Other supporting items will become available in the year following the
publication of the final CAIS 2 Standard.

Public review meetings are planned after the publication of the draft and
final CAIS 2 Standards as one method for obtaining constructive criticism
from a wide audience. A more formal comment mechanism will also be
available during these periods. At other times, the KIT/KITIA acts as the
sounding board for design issues. As a guide for CAIS 2 design, the
KIT/KITIA has published requirements for CAIS 2 [2]. These requirements
are also subject to public review and comment.

D.2.5.2




CAIS 2 REQUIREMENTS

A few of the major CAIS 2 requirements are paraphrased below with
comentary relating to NASA issues.

General Requirements

The CAIS services are intended to be sufficient to support tools used for
software development. There are no requirements for real-time services as
might be required by many NASA applications. Except for some aspects of
comunications, software development has no time-critical component.
Support for testing of applications which have time-critical features is
not addressed by the requirements.

The CAIS shall be independent of any specific operating system or
computer. However, a reasonable level of modernity is assumed.

When implemented with sufficiently sophisticated hardware and software,
the CAIS shall be capable of supporting multilevel secure operations. In
other words, CAIS access control mechanisms must be sufficiently robust to
provide for the partitioning of data, users, and davices which are
commingled in a common system, but operating with differing levels of
security clearance. Some data and devices will be shared, others must not
be. This requirement is critical for Space Station operations where

classified military and proprietary industrial applications must all share
a comnon facility,

The CAIS shall incorporate existing standards to the greatest extent
possible.

The CAIS shall be designed to allow tools to operate in distributed
environments. The least constrained model of distribution is a network of
computers, each having independent memory and file storage. The database
can be shared among the nodes of the network. Computers in the network
may be of the differing types. This model should be sufficient to support
the SSE.

Data Base Requirrments

The requirements mandate support for a sophisticated file system, vor:
close to what is usually called a database ma~agement system (DBMS). The

DBMS is to support a very general structuring capability, e.g. an
entity-relationship model.

No specific configuration management capability is required; although it

is tacitly assumed that the structuring capability be general enough t -
support almost any configuration management method.

D.2.5.3

ORIQINAL PAGE 'S
OF POOR QUALITY



A database typing mechanism is required to control the name space of the
data objects, the attributes possessed by data objects, and the nature of
relationships that can be created among objects.

Robust access control 1is required. In addition to the conventional
discretionary access control, mandatory access control for multi-level
classified material is required.

CAIS 2 is required to supply a mechanism by which certain database
operations trigger the execution of user-defined procedures.

CAIS 2 will supply a means for grouping database operations into
transactions. When transactions are used, the database is permanently
modified only when an entire transaction succeeds. Failing transactions
result in no change to the database. It is also a requirement that the
effect of running transactions concurrently shall be the same as running
them in some serial order.

CAIS 2 is required to supply a mechanism for collecting and storing
information about how database objects were generated. For example, the
history of an object module would include the names and revision numbers
of all source files used in the compilation, the name and revision number
of the compiler used, and the parameters given to the compiler.

A standard data interchange format is required.
Program Execution Requirements

One executing program can start, stop, suspend, and resume other processes
to which it has access.

The CAIS will supply a means for interprocess synchronization and
communication.

The CAIS will supply a means whereby one process can monitor the execution
of another process. This is wuseful for debuggers and other dynamic
analysis tools.

CAIS 2 PLANS

The design of CAIS 2 has progressed to the point where some general
statements can be made about CAIS 2 and its relationship with CAIS 1. We
expect CAIS 2 to address all issues explicityly deferred by the CAIS 1
team. We expect simplifications in some areas. However, since the scope
of CAIS 2 is significantly larger than CAIS 1, the overall complexity
level may be similar. The issue of inter-tool interfaces will be
addressed by proposed standard representations for textual and graphical
data. CAIS 2 designers do not believe that standardization of inter-tool
interfaces more specific than these are within the purview of the effort.

D.2.5.4



CAIS 2 will not alter the basic structure of the CAIS 1 database model.
We expect, however, to conceptually simplify the discretionary access
control mechanism. A typing mechanism will be superimposed upon the
present entity~relationship model. This mechanism will allow new types of
objects to be created by reference to existing types. There will be one
base type for all objects, so that tools which operate on all database
objects will not be affected by the creation of new types of objects. As
a minimum, the typing mechanism will manage the name space of database
objects as well as the allowed attributes and relationships. It is not
clear 1if the typing mechanism will deal with the representation of
database objects. A few additions to CAIS 1 database services are
expected for support of distributed databases.

CAIS 2 will maintain the present process model, i.e. tree structured
process creation with a few embellishments. It 1is likely that some
changes will be needed in the area of interprocess communication and
control in order to support distributed environments.

The entire input/output model of CAIS 1 will be streamlined. The present
model has built-in services for specific classes of devices, e.g.
scrolling terminals, page terminals, and form terminals. Not only does
this approach proliferate the number of interfaces, but it fails to
promote the notion of device independence. For example, given a tool
written for a page terminal, it could be difficult to redirect ocutput from
that tool to a scrolling terminal. While it may not be possible to
achieve satisfactory operation of a screen editor from a Model 33
Teletype, we do not want the interfaces to encourage the construction of
device-dependent tools. To accommodate differing devices, we intend to
propose the notion of a logical device driver (LDD). An LDD is a program
fragment that converts information in a standard representation to and
from a stream of commands for a known device, producing the best rendering
possible, given the device constraints. Under this proposal, CAIS 2 will
have specific interfaces for LDDs, in addition to the normal tool
interfaces. If the LDD interfaces can be defined with the correct blend
of flexibility and specificity, it should be possible to write LDDs in Ada
and transport them from one CAIS implementation to another. 1In other
words, tools would be largely device independent but would depend upon a
specific collection of device drivers. Tools would be ported with their
associated LDDs, if the LDDs are not already present on the new host. HNew
devices would require new LDDs to be created; however, a new LDD should
allow most existing tools to be used with the new device, unless the tool
or the device has some unusual characteristic. The LDD concept would
allow CAIS 2 implementations to utilize new devices without circumventing
the Standard, or necessitating a change to the Standard.



Like CAIS 1, CAIS 2 will supply a bridge to I1/0 facilities defined by
Chapter 14 of the Ads language standard. These facilities are sufficient
for a large number of tools, many of which will exist prior to or outside
of CAIS 2 implementations. This bridge will allow such tools to be
imported into CAIS 2 environments with minimal source code alteration.

We have proposed that CAIS 2 define a few standard data representations
sufficient for a large proportion of tools., One representaticn would be
used for sophisticated text. It would encompass the conventional ASCII

character stream, but augment it to support multi-font, multi-format,
multi-color realizations. This representation would be Dbipartite,
separating the text stream from the description of how the stream is to be
displayed. We have also proposed a standard representation for graphical
images. This representation would subsume the sophisticated text
representation. Finally, we have proposed a standard language for
describing how physical file layout corresponds to the Ada file
specification. This would allow files to be converted so that data can be
moved across the boundaries between computers, operating systems, KAPSEs,
and compiling systems. A standard interchange representation will
complete the capability for moving data between CAIS implementations.
This capability is key to the success of heterogeneous distributed systems
such as SSE.

CAIS 2 designers hope to be able to apply the concepts of standard
representations and LDDs to other areas of the CAIS in order to build some
resilience into the Standard. A standard as comprehensive as CAIS cannot
survive unless it can be rapidly adapted to changing hardware technology
as well as the demands of sophisticated applications such as the Space
Station.

REFERENCES

(1] Military Standard Common APSE Interface Set (CAIS); 31 January
1985; Department of Defense, Washington, D.C. 20302.

(2] DoD Requirements and Design Criteria for the Common APSE

Interface Set (CAIS); 13 September 1985; Ada Joint Program
Office, Washington, D.C.

D.2.5.6




